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Abszract: Total syntheses of the tetrahydropyrroloquinoline-alkaloids, makaluvamines A, B, C 

and D (1,2,3 and 4) have successfully been carried out starting from the appropriate derivatives 

($8 and 10). 

The tetrahydropyrroloquinoline-alkaloid families [prianosinsla (discorhabdins),lb batzellines,re 

isobatzellines,le wakayinld and damironesle] have been regarded as challenging targets by organic chemists for 

their rigidly fused ring structums and concomitant biological activities. Actually, many synthetic investigations 

of these natural products2 including recent publication on synthesis of damirones by Cava? have been 

accumulated, since synthesis of dehydrobufotenine, the toad poison isolated from Bufo maTinlcT.h 

Makaluvamine A (1) Makaluvamine B (2) Makaluvamine C (3) Makaluvamine D (4) 

Very recently, these alkaloid families included as new members makaluvamines, isolated from the Fijian 

sponge Zyzza cf. marsailis, which possess potent inhibitory activities against the function of topoisomerase II as 

well as the growth of human ovarian tumor. 3 In this context, we had achieved the first total syntheses of 

discorhabdin C,4a batzelline C and isobatzelline C,4h and availability of the intermediates in hand would promise 

facile access to makaluvamines. These situations prompted us to initiate syntheses of makaluvamines A, B, C 

and D (1,2,3 and 4). as a part of our extensive investigations of biologically active marine natural products. Our 

synthetic methodology consists of i) lactamization of indole I to II, ii) reduction and oxidation to iminoquinone 

III, and iii) final introduction of appropriate amino functions. We describe herein our synthetic process. 

‘“s”#; - cH30& u - CH@& m 

CH30 R”NH o 

The known lactam (5)4h was submitted to reduction, followed by CAN oxidation to provide iminoquinone 6 

[i. BH3GMe2 / THE ii. CAN / 60% aqCH3CN (48% in two steps)]. Exposure of 6 to NH&l effected 

substitution substitution of the methoxy group to produce 7, which on addition of TEA gave makaluvamine A 
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S:R=H,R’=CHs 6:R=OCH,,R’=CH, 8: R = CGOCI&CtIjSi(CHs), 

9:R=CH,R’=H 7:R=N&,R’=CH3 

lO:R=OCH,R’=H 

(1)s as TFA salt [i. NH&l / MeOH, ii. TFA / MeOH (98% in two steps)]. On the other hand, upon heating in 

the presence of palladium catalysts, 7 underwent oxidation, leading to makaluvamine B salt (2)s [i. 10% Pd-C / 

refluxing benzene; ii. TFA / MeOH (41% in two steps)]. After methylation, the indole (8Fa was successively 

depr0tecte.d to give a free amino acid, which was submitted to intramolecular cyclization to give lactam 9 [i. Mel, 

NaH / DMF (77%); ii. Hz, Pd-black / AcOH - 60% HC104 (1O:l); iii. 10M KOH / MeOH, iv. DCC / THF 

(41% in three steps)]. According to essentially the same procedure as in the case of $9 was converted into 

makaluvamine C (3)s [i. BH+Me2 /THF, ii. CAN / 60% aq.CH$N; iii. NI$OH / MeOH - CHCl3; iv. TFA / 

MeOH (26% in four steps). Additionally, makaluvamine D (4)s was synthesized by coupling of iminoquinone 

104a with tyramine hydrochloride [i. tyramine hydrochloride, NaHC0-j / MeOH; ii. TFA / MeOH (92% in two 

steps)]. 
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